

 www.cypress.com Document No. 001-54460 Rev. *D 1

AN54460
PSoC® 3 and PSoC 5 Interrupts

Author: Vivek Shankar Kannan
Associated Project: Yes

Associated Part Family: All PSoC® 3 and PSoC 5 families
Software Version: PSoC Creator™ 2.0

Related Application Notes: AN60630

If you have a question, or need help with this application note, contact the author at
vvsk@cypress.com.

AN54460 explains the interrupt architecture in PSoC® 3 and PSoC 5 and the support for interrupts in the PSoC
Creator™ IDE. Advanced interrupt concepts such as handling re-entrant functions and optimizing the interrupt code are
explained in detail. After reading this application note, you will be able to use PSoC 3 and PSoC 5 interrupts in an
efficient way for different applications.

Contents
Introduction ... 1
PSoC 3 and PSoC 5 Interrupt Architecture 1

Unique Features of PSoC 3 and PSoC 5 Interrupts 2
Level and Edge Triggered Interrupts 2
PSoC 3 and PSoC 5 Interrupt Sources 3

Interrupt Support in PSoC Creator 3
Interrupt Component Configuration 4
Interrupt Priority Configuration 5
My First Interrupt Project .. 5
Changing Interrupt Vector Address 7

Re-entrant Functions in PSoC 3 .. 8
Re-entrancy in Keil C51 Compiler 8
Re-entrancy Support in PSoC Creator 8
Determining Re-entrant Functions 9
PICU Interrupt Project .. 10

Advanced Interrupt Topics .. 12
Optimizing the Interrupt Code 12
Interrupt Component APIs .. 12
Interrupts and Other Components 13
Unsupported Fixed Function Interrupts 13
Forcing Interrupt Vector Number Selection 14

Summary ... 15
Project Summary .. 15

Appendix A – Interrupt Sources in PSoC 3 and PSoC 5 . 16
Worldwide Sales and Design Support 19

Introduction
Interrupts are an important part of any embedded
application. They free the CPU from having to
continuously poll the occurrence of a specific event and,
instead, notify the CPU only when that event occurs. In
system-on-chip (SoC) architectures, such as PSoC 3 and
PSoC 5, interrupts are frequently used to communicate
the status of the different on-chip peripherals to the CPU.

AN54460 introduces you to the PSoC 3 and PSoC 5
interrupt architecture, and explains the support for
interrupts in the PSoC Creator IDE, the development tool
for PSoC 3 and PSoC 5. Advanced interrupt concepts
such as handling re-entrant functions are explained in
detail. Code examples are provided to explain the different
use cases of interrupts.

PSoC 3 and PSoC 5 Interrupt
Architecture
This section gives an overview of the PSoC 3 and PSoC 5
interrupt architecture.

Figure 1. PSoC 3 and PSoC 5 Interrupt Architecture

Interrupt
Controller

int[0]
int[1]

int[31]

CPU

Interrupt
Lines

http://www.cypress.com/
http://www.cypress.com/?rID=40986
mailto:vvsk@cypress.com

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 2

Figure 1 shows the simplified view of the PSoC 3 and
PSoC /5 interrupt architecture. There are 32 interrupt lines
(int[0…31]) in PSoC 3 and PSoC 5. Each interrupt line can
be assigned one of the eight priority levels (0-7), with ‘0’
being the highest priority and ‘7’ being the lowest priority.
Each interrupt line is assigned an interrupt vector address,
which refers to the starting address of the interrupt code.
The CPU execution branches to this address after
receiving an interrupt request. The interrupt code is
referred to as the Interrupt Service Routine (ISR).

The interrupt controller acts as the interface between the
interrupt lines and the CPU. It sends the interrupt vector
address of an interrupt line to the CPU along with the
interrupt request signal. The interrupt controller also
receives acknowledgement signals from the CPU on
interrupt entry and exit conditions. The interrupt controller
resolves interrupt priority in the case of requests from
multiple interrupt lines.

For more technical information on the operation of PSoC 3
and PSoC 5 interrupts, refer to the Interrupt Controller
chapter of the PSoC 3 Technical Reference Manual
(TRM), PSoC 5 TRM.

Unique Features of PSoC 3 and PSoC 5
Interrupts
PSoC 3 and PSoC 5 provide the following enhanced
interrupt features that are not supported by the other
traditional microcontrollers:

 Configurable Interrupt Vector Address: In PSoC 3
and PSOC 5, you can dynamically configure the
interrupt vector address. The CPU execution can be
directly branched to any ISR code when the interrupt
occurs. In traditional microcontrollers, the interrupt
vector address is fixed for each interrupt line.
Typically, a “JUMP” instruction is placed in that fixed
address to branch the CPU execution to the actual
ISR code. This unique feature reduces the interrupt
execution latency in PSoC 3 and PSoC 5 compared to
the traditional microcontrollers.

 Flexible Interrupt Sources: In traditional
microcontrollers, the interrupt source is fixed for each
interrupt line. PSoC 3 and PSoC 5, give you the
flexibility to choose the interrupt source for each
interrupt line. This flexible architecture enables any
digital signal to be configured as an interrupt source.

Level and Edge Triggered Interrupts
PSoC 3 and PSoC 5 support both level triggered and edge
triggered interrupts. The classification of an interrupt as
level or edge triggered is based on the interrupt signal
generated by the interrupt source.

Figure 2. Level Triggered Interrupts

int[x]

CPU
Execution

State main
ISR ISR

main
ISR

main

int[x] is still high

Figure 3. Edge Triggered Interrupts

int[x]

CPU
Execution

State main
ISR

main
ISR

main
ISR

Figure 2 and Figure 3 show the working of level triggered
and edge triggered interrupts respectively. Assuming the
interrupt line is initially inactive (logic low), the following
sequence of events explains the handling of level
triggered and edge triggered interrupts:

 On a rising edge event on the interrupt line, the
interrupt controller registers the interrupt request. The
interrupt line is now in the pending state, which refers
to the interrupts whose requests have not yet been
serviced by the CPU.

 The interrupt controller then sends the interrupt vector
address along with the interrupt request signal to the
CPU. When the CPU starts executing the ISR of the
interrupt line, the pending state of the interrupt line is
cleared.

 When the ISR is being executed by the CPU, one or
more rising edges on that interrupt line are again
logged as a single pending request. The pending
interrupt is serviced again after the current ISR
execution is complete (see Figure 3 for edge triggered
interrupts).

 If after completing the ISR, the interrupt line is still
high, the interrupt line becomes pended, and the ISR
is executed again. This is shown in Figure 2 for level
triggered interrupts, where the ISR is executed as
long as the interrupt line is high.

Edge triggered interrupts are pulse signals and, therefore,
they are also referred to as pulse interrupts. The minimum
pulse width for an edge triggered interrupt is one bus clock
cycle. There is a rising edge detect logic in the PSoC 3
and PSoC 5 interrupt architecture to ensure that the
interrupt is triggered once on a rising edge. This feature is
explained in the next section.

http://www.cypress.com/
http://www.cypress.com/?rID=35180
http://www.cypress.com/?rID=55603

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 3

PSoC 3 and PSoC 5 Interrupt Sources
Figure 4. Interrupt Sources in PSoC 3/5

DMA nrq Interrupt Source

Fixed Function Interrupt Source

Rising
Edge
Detect

UDB Interrupt
Source

Digital
System

Interconnect

0

1

2

3

int[n]

IDMUX

n = 0 to 31

Direct Path To Interrupt
Controller

Each of the interrupt lines (int[0…31]) in PSoC 3 and
PSoC 5 can be driven by one of the three interrupt
sources as shown in Figure 4. There is a multiplexer logic
(IDMUX) to select the source for each interrupt line.

Fixed Funct ion Interrupt Sources
These are the predefined set of interrupt sources from the
different on-chip peripherals. Examples of these include
the interrupt signals from the fixed function timers,
counters, Port Interrupt Control Unit (PICU), and so on.
The list of fixed function interrupt sources in PSoC 3 and
PSoC 5 is provided in Appendix A – Interrupt Sources in
PSoC 3 and PSoC 5.

Most of the fixed function interrupt sources are level
interrupts that require the peripheral status register to be
read in the ISR. There are two purposes for reading the
peripheral status register in the ISR:

1. Reading the status register gives the knowledge of
what peripheral condition generated the interrupt. For
example, in the case of a PICU interrupt, each bit of
the PICU status register corresponds to a port pin.
Reading the status register will let the user know
which port pin(s) generated the PICU interrupt.

2. The interrupt source is derived as logical OR signal of
the status register bits. The bits that are set in the
status register will be cleared on a CPU read
operation, thus bringing the interrupt line low. If the
status register is not read in the ISR, the ISR will be
executed continuously.

DMA nrq Interrupt Source
Each direct memory access (DMA) channel in PSoC 3 and
PSoC 5 generates a pulse signal on the completion of a
DMA transfer operation. This transfer complete signal
(referred to as the nrq signal) can be used to trigger an
interrupt after the DMA data transfer is complete. This is
an edge triggered interrupt.

UDB Interrupt Sources
Any digital signal can be configured as an interrupt source
by routing it through the digital system interconnect (DSI).
These sources are broadly referred to as UDB interrupt
sources because most of these interrupt sources are from
the universal digital blocks (UDBs) in PSoC 3 and PSoC 5.

UDB is the basic building block of the different digital
peripherals in PSoC 3 and PSoC 5. Examples are the
digital peripherals such as UART, SPI, I2C, and UDB-
based timers, counters, and PWMs.

The fixed function interrupt sources can also be routed
through the DSI interface apart from the dedicated routes
available for them as shown in Figure 4.

There are two paths that exist for the UDB interrupt
sources.

1. The first path is a direct connection of the UDB
interrupt source to the interrupt line, which is marked
as Direct Path in Figure 4. This is used for level
triggered UDB interrupts. Examples are the interrupts
generated by the communication peripherals like
UART and SPI that generate level interrupts to
indicate that the First In First Out (FIFO) data buffer
has data to be read (Receive FIFO) or space for data
to be written (Transmit FIFO).

2. The second option is to pass the UDB interrupt source
through the Rising Edge Detect logic as shown in
Figure 4.

Figure 5. Edge Triggered UDB Interrupt Source

int[x]
(Output of “Rising

Edge Detect”)

CPU Execution
State

main
ISR

main main

1 bus clock

Interrupt Source

ISR

In this case, the occurrence of a rising edge signal from
the UDB interrupt source is converted into a pulse signal
as shown in Figure 5. This feature is used for interrupt
sources that should be edge triggered.

Now that you have learnt the interrupt features supported
in PSoC 3 and PSoC 5, the following sections explain how
the PSoC Creator IDE simplifies the use of interrupts and
the various features available in PSoC Creator for interrupt
usage.

Interrupt Support in PSoC Creator
PSoC Creator supports interrupts by providing them as a
component. The Interrupt component is available under
the System tab in the Component Catalog window as
shown in Figure 6. Each instance of the interrupt
component is an interrupt line. The interrupt source should
be connected to the interrupt component in the schematic
of the example as shown in Figure 6.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 4

Figure 6. Interrupt Component in PSoC Creator

Interrupt Component Configuration
The interrupt component configuration window is shown in
Figure 7. The InterruptType parameter in the component is
used to configure the IDMUX selection for the interrupt
source as shown in Figure 4.

Figure 7. Interrupt Component Configuration

The IDMUX selection criterion is as follows.

 InterruptType = Derived: When the Derived option is
selected, PSoC Creator makes the IDMUX selection
based on the type of the interrupt source:

 For digital output signals from the fixed function
blocks listed in Table 1, the interrupt source is
directly connected to the interrupt controller. Either
the dedicated connection for the interrupt source
or the direct path through the DSI interface is
used.

 If the interrupt source is the DMA nrq signal, the
dedicated path for the DMA nrq interrupt source is
selected.

 For any other interrupt source such as the UDB
based components, other digital signals, the rising
edge option of the DSI interface is selected. The
Derived option treats these interrupt sources as
edge triggered interrupts.

 InterruptType = RISING_EDGE: This selection
routes the interrupt source signal through the rising
edge detect path as shown in Figure 4. This selection
should be made for interrupt sources that you want to
be edge triggered.

 InterruptType = LEVEL: This option routes the
interrupt source through the direct path in the DSI
interface. This selection should be made for the
interrupts that you want to be level triggered.
Examples of the interrupt sources that use this option
are the interrupt outputs from the UDB based
components like UART, SPI, UDB based timer,
counter, and PWM.

Guidel ines for the Interrupt Type Parameter
Select ion

 For interrupt outputs from the fixed function interrupt
sources, and DMA nrq interrupt sources, select the
Derived option. The list of PSoC Creator components
whose interrupts come under the fixed function
category are listed in Appendix A – Interrupt Sources
in PSoC 3 and PSoC 5. All the fixed function
components have an associated interrupt terminal
which will be connected to the interrupt component. If
some other digital output signal coming from the fixed
function blocks (like the terminal count signal of fixed
function timer block) is connected to an interrupt
component, do not use the Derived option. Explicitly
choose either one of Level or Rising_Edge option as
required.

 For any other interrupt source, select the Level option
if the interrupt should be level triggered, or the
Rising_Edge option if the interrupt should be edge
triggered. Refer to the respective component
datasheet to know the type of interrupt signal
generated by the component, and make the selection
accordingly.

The Derived option or the Rising_Edge option should
never be selected for the interrupts generated by the UDB
based components such as UART, SPI, and so on. The
reason is that these components generate a level interrupt
to indicate the FIFO buffer status signal. The FIFO buffer,
which is 4-byte deep, is used to temporarily store data to
be transmitted (Tx FIFO) from or received (Rx FIFO) by
PSoC 3 and PSoC 5.

For an Rx FIFO, the FIFO status signal is high as long as
there is a byte of data to be read by the CPU. Therefore, if

http://www.cypress.com/

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 5

the ISR is written such that only one byte is read each
time the interrupt occurs, then selecting the Derived or the
Rising_Edge option results in the ISR getting triggered
only once on rising edge, even if more than 1 byte is
received. This results in the FIFO buffer being overwritten
due to the stalled condition of the interrupt. You should
consider the implications of configuring a level triggered
UDB interrupt source as an edge triggered interrupt before
choosing the Derived or the Rising_Edge option.

Interrupt Priority Configuration
The design wide resources window (project_name.cydwr)
of the project has an Interrupts tab, which displays the
interrupt component names, their priority, and vector
numbers (line numbers) as shown in Figure 8.

Figure 8. Interrupt Tab in cydwr Window

The priority of the interrupts can be changed in the cydwr
window. Remember that 0 has the highest priority, and 7,
the lowest priority. The interrupt vector number for each
interrupt component is automatically allocated by PSoC
Creator when the project is built.

My First Interrupt Project
This section guides you through the step by step
procedure for creating a simple interrupt based project in
PSoC Creator.

The objective of this code example is to toggle a pin when
the terminal count of a timer occurs. The timer block in
PSoC 3 and PSoC 5 is a down counter, and the terminal
count refers to the condition when the timer has reached
the minimum value (zero). On the terminal count, the timer
is reloaded with the period value and the down counting
starts again. An interrupt can be generated every time the
terminal count condition occurs.

Project Schematic
Figure 9. Timer Interrupt Project Schematic

Figure 9 shows the project schematic. The interrupt output
from the timer component is connected to the interrupt
component. The digital output pin LED1 is toggled in the
code every time the timer terminal count event occurs.

The configuration of the timer component is shown in
Figure 10. For a 1 KHz clock frequency and a period value
of 1000, the terminal count condition is reached once a
second. The timer is configured to generate an interrupt
on terminal count (tc). The Implementation parameter is
chosen as UDB, which means that the timer is
implemented using the UDBs in PSoC 3 and PSoC 5. The
rest of the parameters are left in their default settings.

Figure 10. Timer configuration

From the timer component datasheet, it is known that the
interrupt output generated by the timer component
remains asserted until the timer status register is read by
the CPU. This implies that the interrupt is level triggered.
Hence the InterruptType parameter of the interrupt
component is configured for LEVEL because the interrupt
source is a level triggered UDB interrupt source.

The priority of the interrupt component in the cydwr
window is left at the default value of 7 because there is
only one interrupt used in this project.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 6

Writ ing the Interrupt Service Routine
Go to Build > Generate Application. PSoC Creator
generates the source files and header files for the
components used in the project.

PSoC Creator generates a default interrupt service routine
(ISR) for each interrupt component in the corresponding
source file. This ISR has the name CY_ISR(isr_name).
You must write the ISR code in the placeholder inside the
function CY_ISR(isr_name).

In this project, a global variable is set in the ISR. This
variable is checked in the main code to check if the
interrupt has occurred. The global variable should be
defined in the ISR source file. The timer component status
register is also read in the ISR to bring the interrupt line
low. The header file that has the function declaration for
reading the timer status register should be included in the
ISR source file.

PSoC Creator provides a region in the beginning of the
interrupt source file for including the header files, defining
the global variables that are used in the ISR code. For the
current project, this region has the following code.

Code 1. Including header file and global variables in the
ISR

/**
* Place your includes, defines and code
here
**/
/* `#START isr_1_intc` */
/* Timer component header file */
#include “Timer_1.h”
/* Global variable definition */
volatile uint8 toggle_flag = 0;
/* `#END` */
The code should be written only between the #START and
#END lines. PSoC Creator preserves only the code written
between these two lines during the build process. Any
code that is written outside of these two lines is deleted
during the build process.

The ISR code for this project follows. It is written in the
placeholder region provided inside the function
CY_ISR(…).

Code 2. ISR code for the Timer project

CY_ISR(isr_1_Interrupt)
{
 /* Place your Interrupt code here */
 /* `#START isr_1_Interrupt` */
 /* Read Timer status register to bring
the interrupt line low */
 Timer_1_ReadStatusRegister();
 /* Set the flag variable */
 toggle_flag = 1;
 /* `#END` */
}

The ISR code should be written only between the #START
and #END lines. PSoC Creator preserves only the code
written between these two lines during the build process.

Complet ing the Main Code
In the main code, the components are initialized and
started. If the timer interrupt occurs, the output pin is
toggled in the main code by checking the global variable
that is set in the ISR. The main code for this project
follows.

Code 3. Main code for the timer project

#include <device.h>
/* Global variable defined in timer ISR */
extern volatile uint8 toggle_flag;

void main()
{
 /* Enable global interrupts */
 CYGlobalIntEnable;
 // Initialize, enable interrupt, timer
 isr_1_Start();
 Timer_1_Start();
 for(;;)
 {
 /* Toggle the LED1 pin, reset the
 flag variable */
 if(toggle_flag == 1)
 {
 LED1_Write(~LED1_Read());
 toggle_flag = 0;
 }
 }
}

In the above code, the macro CYGlobalIntEnable
configures the interrupt controller block to generate the
interrupt request signal to the CPU, and also configures
the CPU to accept the request signals.
CYGlobalIntEnable macro is defined in the file
CyLib.h, and it takes the appropriate definition based on
whether the project is for PSoC 3 or PSoC 5. Using this
macro for enabling global interrupts ensures the code
portability across multiple compiler tool chains and device
families (PSoC 3 and PSoC 5).

The isr_1_Start() function is called in the main code
for initializing and enabling the isr_1 interrupt component.
This function does the following:

 Sets the interrupt vector address to the address of the
default ISR function provided in the interrupt
component source file.

 Configures the interrupt priority according to the
priority value assigned in the cydwr window.

 Enables the interrupt

http://www.cypress.com/

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 7

Signi f icance of Keyword CY_ISR
The interrupt source file defines the ISR function using
CY_ISR keyword. Every compiler requires a specific
function definition format to recognize a function as an
ISR. PSoC Creator provides an ISR definition format that
is independent of the compiler by providing the CY_ISR
macro in the cytypes.h file. Refer to the cytypes.h file for
definition of the CY_ISR macro for different compilers such
as Keil, GCC, and RealView.

Similarly, for declaring the ISR function, the macro
CY_ISR_PROTO is used in the header file of the interrupt
component. This macro is also defined in the cytypes.h
file, and takes the appropriate definition depending on the
compiler selected. For example, the interrupt component
isr_1 has the following function declaration in the header
file:

CY_ISR_PROTO(isr_1_Interrupt);

Using these macros for declaring and defining the ISRs
ensures the portability of the code across multiple
compilers and device families (PSoC 3 and PSoC 5).

This completes the simple interrupt based project. The
same sequence of steps should be followed for any other
interrupt based project. The following sections discuss
some of the advanced features available for interrupts in
PSoC Creator.

Changing Interrupt Vector Address
PSoC Creator provides a default ISR in the source file of
the interrupt component. Most often, this is the place
where you write the ISR code. However, there may be
scenarios when there might be a need to write the ISR in a
different location. These scenarios are as follows:

 When a project is ported between PSoC 3 and
PSoC 5 devices, two copies of the ISR must be
written in the corresponding source files of the
interrupt component. Instead of writing the ISR code
in two separate source files, the ISR can be written in
a user defined source file that is common to both the
PSoC 3 and PSoC 5 projects. Therefore, any changes
to this common ISR are applicable for both the
PSoC 3 and PSoC 5 projects.
Figure 11 shows the two different source files
generated for an interrupt component isr_1 on building
a project that is ported from PSoC 3 to PSoC 5, or
vice versa. The user can write the interrupt service
routine in a common user defined source file or in
main.c.

Figure 11 shows an example where the ISR is defined
in a common source file InterruptRoutines.c.

Figure 11. Separate ISRs for PSoC 3and PSoC 5

 If there is a requirement to keep the user code
including ISR code separate from the PSoC Creator
generated code, it might be necessary to write the ISR
code in a separate source file instead of the default
location.

If you want to make your own function MyCustomISR as
the ISR for an interrupt isr_1 instead of the default ISR, do
the following steps.

 The first step is to declare the function using the
CY_ISR_PROTO macro as follows:

 CY_ISR_PROTO(MyCustomISR);

 The second step is to define the function using the
CY_ISR macro as follows:
Code 4. Writing your own ISR function

 CY_ISR(MyCustomISR)
 {
 /* ISR code goes here */
 }

 Finally, the API isr_1_StartEx(…) of the interrupt
component is called in main.c to configure and enable
the interrupt as follows. This API is similar to the
isr_1_Start() API, the only difference being that
the isr_1_StartEx() API configures the interrupt
vector address to the user defined ISR function, which
is passed as the function parameter.

 isr_1_StartEx(MyCustomISR);

http://www.cypress.com/

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 8

A code example that illustrates the feature of changing the
interrupt vector address is explained in the section PICU
Interrupt Project.

Re-entrant Functions in PSoC 3
A re-entrant function can be called by multiple separate
processes at the same time. When a re-entrant function is
executing, another process can interrupt the execution,
and it can call the same function from its context.
Examples of separate processes are the main code and
the ISR.

PSoC 3’s Keil compiler requires users to explicitly specify
which functions need to be made re-entrant, while PSoC 5
compilers support re-entrancy by default. This section
explains the procedure for handling re-entrant functions in
PSoC 3.

Re-entrancy in Keil C51 Compiler
Due to the limited amount of stack and RAM space
available in the PSoC 3’s 8051 CPU, the Keil C51
compiler considers functions as non re-entrant by default.
The Keil compiler stores the function arguments and the
local variables used in the function in fixed memory
locations. Simultaneous calls to the function in this case
use the same memory locations. Hence, function
arguments and local variables can get corrupted.

While not re-entrant by default, functions can be made to
support re-entrancy on a case by case basis in the Keil
compiler. The Keil compiler creates a re-entrant stack on
which the function’s local variables and arguments are
stored. The pointer to this stack is adjusted on function
calls so that multiple calls to the function are executed
correctly. The re-entrant stack is created in the xdata
memory space (SRAM memory space in PSoC 3).

If a re-entrant function is present in the PSoC Creator
project, the KeilStart.a51 file of the project has the auto
generated code to enable the re-entrant stack, and
initialize the stack pointer as follows:

Code 5. Code for re-entrant stack configuration

XBPSTACK EQU 1
XBPSTACKTOP EQU CYDEV_SRAM_SIZE

The first statement is to configure the xdata memory
space (SRAM memory) to be the re-entrant stack location.
The second statement assigns the top-of-the-stack
address to the last byte address of the SRAM. This is
because the re-entrant stack pointer grows downward. By
having the stack pointer assigned to the last address of
the SRAM memory, there is enough space allocated for
the stack to grow downward without overwriting the
variables in the fixed memory addresses.

Re-entrancy Support in PSoC Creator
The procedure to make a function re-entrant in PSoC
Creator depends on whether the function is an API
generated by PSoC Creator, or a user defined function, or
a function associated with a custom component created by
the user. The different procedures are explained in the
following sections. A code example illustrating the different
procedures is explained in the section PICU Interrupt
Project.

Making Generated API Functions Re-entrant
These are the functions associated with the source code
generated by PSoC Creator such as the component APIs.
PSoC Creator allows you to specify which of the
generated API functions should be made re-entrant on a
case by case basis through a ‘re-entrancy file’ (cyre file).
This file specifies exactly which functions should be made
re-entrant. Each line of the file must be a single function
name. During the build process, any candidate functions
contained in the re-entrancy file are automatically marked
to support re-entrancy.

Most functions in the API files are candidates for re-
entrancy. If a function cannot be made re-entrant,
comments in the component source files indicate that the
function is not a candidate for re-entrancy. This may be
due to the fact that the function might use global or static
variables, or call other functions, which cannot be made
re-entrant.

To add a cyre file to a project:

1. Right-click on the project in the Workspace Explorer,
and select Add > New Item.

2. On the New Item dialog, select the ‘Keil Re-entrancy
File’ and click OK (see Figure 12). The
Project_Name.cyre file opens in the code editor.

Figure 12. Adding cyre file to a project

http://www.cypress.com/

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 9

To enter re-entrant functions:
1. Type a single function name for each line in the cyre

file. Note that only the function name needs to be
entered in the cyre file, and the function name is case
sensitive. The function return type or the brackets
used to indicate a function should not be entered in
the cyre file. Here is an example:

 ADC_Start
 PWM_Start
2. Save the cyre file when complete.
Making User Defined Funct ions Re-entrant
These are functions that the user defines as part of the
application code. The cyre file cannot be used for
specifying user defined functions as re-entrant. To support
re-entrancy for user defined functions, use the
CYREENTRANT macro from cytypes.h as part of the
function prototype, and also the function definition. For the
Keil tool chain, this evaluates to the ‘re-entrant’ keyword,
while for all other tool chains it evaluates to nothing. This
allows the code to function properly across multiple tool
chains and multiple device families. The following example
shows how to make a user defined function Foo re-
entrant.

Code 6: Original function declaration, definition
void Foo(void);
void Foo(void)
{
 …
}

 Code 7: Modified re-entrant function
void Foo(void) CYREENTRANT;
void Foo(void) CYREENTRANT
{
 …
}

Making Custom Component APIs Re-entrant
These are the functions that are part of the component
source file and header file that the user creates. PSoC
Creator allows users to create their own components and
use them in an example. When creating a custom
component, any function in the source file and the header
file of the component can be made to support re-entrancy
using the `=ReentrantKeil($INSTANCE_NAME .
_FunctionName)`” build expression. Replace the
FunctionName in the build expression with the actual
function name; all other fields must be left unchanged.
Both the function declaration in the .h file and the function
definition in the .c file must include this expression. This
allows the function to behave in the same manner as other
components shipped with PSoC Creator. By default, it is a
standard function; however, the user can make it re-
entrant by adding the function name to the *.cyre file (see
the section Making Generated API Functions Re-entrant).

Code 8: Original function declaration, definition
void `$INSTANCE_NAME`_Foo (void);
void `$INSTANCE_NAME`_Foo (void)
{
 …
}

 Code 9: Modified re-entrant function
void `$INSTANCE_NAME`_Foo(void)
`=ReentrantKeil($INSTANCE_NAME . “_Foo”)`;
void `$INSTANCE_NAME`_Foo(void)
`=ReentrantKeil($INSTANCE_NAME . “_Foo”)`
{
 …
}

Determining Re-entrant Functions
You must mark a function as re-entrant only when the Keil
compiler allocates RAM space for the function, in addition
to being called concurrently. The Keil compiler can help
determine which functions should be marked re-entrant
during the build process. When the optimization level is
set to 2 or higher and a build is performed, the Keil will
output a warning for any functions that can be called
simultaneously that are not marked as re-entrant.

Because the warning message for the re-entrancy issue is
not easy to understand, the format of the warning
message is explained in the following examples.

Warning: L15 MULTIPLE CALL TO FUNCTION
MYFUNCTION/MAIN ?C_C51STARTUP
ISR_1_INTERRUPT/ISR_1
In this warning message, L15 MULTIPLE CALL TO
FUNCTION refers to the re-entrancy warning.
MYFUNCTION/MAIN refers to the fact that the function
MyFunction, defined in the file main.c, is the one that
is being called concurrently. One of the callers of
MyFunction is the main code. The Keil compiler uses the
term ?C_C51STARTUP to refer to the main flow of
execution that originates from the main() function. The
second caller of MyFunction is the function
isr_1_Interrupt in the file isr_1.c, which is
indicated by ISR_1_INTERRUPT/ISR_1. This is the
interrupt service routine. Therefore, the function
MyFunction needs to be made re-entrant. Notice that the
Keil compiler re-entrancy warnings always refer to the
function names and file names in capital letters even when
they are in a different case.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 10

Another example of the warning message follows.

WARNING: L15: MULTIPLE CALL TO FUNCTION
DELAY/TIMING ISR_1/INTERRUPT_1
ISR_2/INTERRUPT_2
In this warning message, the function Delay() in the file
Timing.c is concurrently called from two interrupt
service routines - the function isr_1() in the file
Interrupt_1.c, and also the function isr_2() in the
file Interrupt_2.c. So, the function Delay() should
be made re-entrant.

The warning message formats are according to how they
appear in the Notice List window of PSoC Creator. The
format is slightly different in the Output window and the
map file of the example. In both the Output window and
the map file, the earlier warning that was shown would be
in the following format.

Warning: L15 MULTIPLE CALL TO FUNCTION
NAME: MYFUNCTION/MAIN CALLER1:
?C_C51STARTUP CALLER2:
ISR_1_INTERRUPT/ISR_1
The re-entrancy warnings should never be ignored, even if
those warnings may not be applicable under all the cases.
As an example, the interrupt might be disabled when the
function is called from the main code. So, there is no
possibility of the function being called concurrently from
both the main and the ISR. However, the Keil linker will
not be able to identify these scenarios. It still throws the
re-entrancy warnings seeing the concurrent function calls.
Ignoring the re-entrancy warnings, even if not applicable,
may cause the linker to allocate the same memory
locations for different execution flows during data
overlaying. This may potentially result in data corruption
and the functionality of the code can get affected.

PICU Interrupt Project
This is the second interrupt based code example. This
example practically explains the following three topics.

1. Use of Port Interrupt Control Unit (PICU), the interrupt
associated with the digital input pins of PSoC 3 and
PSoC 5

2. How to make a user defined function as an ISR
instead of using the default ISR generated by PSoC
Creator.

3. The method of handling re-entrant functions in PSoC
Creator

The objective of this project is to toggle a pin whenever a
switch is pressed. In this example, two switches need to
be monitored. There are two output pins connected to two
LEDs. Depending on which switch is pressed, the
corresponding LED needs to be toggled. There are many
ways to implement this requirement; this project uses an
interrupt based implementation. Both the development
kits, CY8CKIT-001 and CY8CKIT-030, have switches for
easily testing this project.

PICU Interrupt
For detecting the switch press, use the Port interrupt
control unit (PICU) interrupt. There is one PICU interrupt
for each port, where each port consists of eight I/O pins.
Each one of the eight I/O pins can be individually
configured to generate a PICU interrupt, either on a falling
edge, or a rising edge, or both the edges. When the
configured event occurs on that pin, the corresponding bit
of the 8-bit PICU status register is set. The PICU interrupt
is the logical OR output of the status register bits. The
PICU status register can be read to determine which port
pin generated the PICU interrupt.

Project Schematic
Figure 13. Schematic of PICU Interrupt Project

The schematic of the project is shown in Figure 13.
Switch_1, Switch_2 are the two input pins connected
externally to the two switches on the development kit. The
switch is a push button, which momentarily connects to
ground when pressed. Hence, the pins are configured for
the resistive pull-up drive mode with an initial state of logic
high. The pins are configured to generate the PICU
interrupt on Falling Edge as shown in Figure 14 to detect
the switch press event. The PICU interrupt signal from
each of the input pins is connected to the interrupt
components isr_1, isr_2. The output port LED, which
consists of two output pins, is toggled in software when a
PICU interrupt occurs.

http://www.cypress.com/
http://www.cypress.com/?rID=37464
http://www.cypress.com/?rID=49524

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 11

Figure 14. PICU interrupt configuration

This project uses two separate PICU interrupts instead of
one PICU interrupt only to practically explain the function
re-entrancy issues discussed in the previous section.
Since two separate PICU interrupts are used, both
switches cannot share the pins in the same port.

The InterruptType parameter of both isr_1 and isr_2 is
configured for DERIVED because the PICU interrupt is a
fixed function interrupt source (listed in Appendix A –
Interrupt Sources in PSoC 3 and PSoC 5). The interrupt
priority is set in the Interrupts tab of the cydwr window
similar to Figure 8. isr_1 interrupt is assigned a higher
priority than isr_2. By having both ISRs call a common
function, the concept of function re-entrancy is explained
in this example by having isr_1 interrupt the execution of
isr_2, and then call the same function.

Interrupt Service Routine (ISR)
Go to Build > Generate Application. PSoC Creator
generates the source files and header files for the different
components along with other files associated with the
example.

In this project, the ISRs for the two interrupts, isr_1 and,
isr_2, are written in different locations instead of using the
default ISR provided by PSoC Creator.

A user defined header file, InterruptRoutines.h, has the
function declaration prototypes for the user defined ISR’s
MyCustomISR_1 and MyCustomISR_2 for isr_1, isr_2
respectively. The code in the header file is as follows:

Code 10: User Defined ISR Declarations

CY_ISR_PROTO(MyCustomISR_1);
CY_ISR_PROTO(MyCustomISR_2);
A user defined source file InterruptRoutines.c is used to
define the interrupt service routines MyCustomISR_1,
MyCustomISR_2 for isr_1 and isr_2 respectively. The
keyword CY_ISR is used to identify the functions as ISR.
The code in the source file that has the ISR definitions
follows.

Code 11: User Defined ISR Definitions

#include "InterruptRoutines.h"
CY_ISR(MyCustomISR_1)
{
 uint8 LED0_PortState;
 /* Read LED port state */
 LED_0_PortState = LED_Read();
 /* Toggle only LED[0] pin */
 LED_Write(LED0_PortState ^
 LED__0__MASK);
 /* Introduce a delay routine to neglect
 swicth bouncing */
 DelayRoutine();
 /* Read the PICU status register */
 Switch_1_ClearInterrupt();
}

CY_ISR(MyCustomISR_2)
{
 uint8 LED_1_PortState;
 /* Read LED port state */
 LED_1_PortState = LED_Read();
 /* Toggle only LED[1] pin */
 LED_Write(LED_1_PortState ^
 LED__1__MASK);
 /* Introduce a delay routine to neglect
 swicth bouncing */
 DelayRoutine();
 /* Read the PICU status register */
 Switch_2_ClearInterrupt();
}
The function DelayRoutine() is defined in
InterruptRoutines.c. This function introduces time delay by
using loop iteration in the code. This delay is introduced
prior to reading the PICU status register. The delay before
reading the status register ensures that multiple falling
edge transitions due to switch bouncing do not trigger the
PICU interrupt multiple times. Refer to the project provided
to view the complete code including the function definition
of DelayRoutine() in the file InterruptRoutines.c.

Main Code
The main code only contains the functions to configure
and enable the interrupts as follows:

Code 12: Main code

/* enable global interrupts */
CYGlobalIntEnable;
/* Configure, Enable the interupts */
isr_1_StartEx(MyCustomISR_1);
isr_2_StartEx(MyCustomISR_2);
The StartEx(…) API is used since the ISRs are defined
in user defined locations instead of the default ISR
location.

Handl ing Re-entrancy
In this example, three functions are called concurrently
from both the ISRs - LED_Read() and LED_Write(…)-
and DelayRoutine(). The first two functions are the

http://www.cypress.com/

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 12

PSoC Creator generated APIs for the LED output pin
component and the last one is the user defined delay
routine. Just by observing, it might seem that these three
functions need to be made re-entrant.

When the example is built with none of the functions being
made re-entrant, the Keil compiler throws the re-entrancy
warnings only for the two functions, that is,
LED_Write(…) and DelayRoutine(). There are no re-
entrancy warnings for the function LED_Read() because
this function does not use any arguments or local
variables. It uses only the general purpose registers of the
CPU. Hence this function is inherently re-entrant and the
compiler does not throw any re-entrancy warnings.

The function LED_Write() is made re-entrant by adding
it to the re-entrancy file (cyre) using the steps explained in
the section Making Generated API Functions Re-entrant.
The user defined function DelayRoutine() is made re-
entrant using the steps explained in the section Making
User Defined Functions Re-entrant.

Refer to the PicuInterruptProject PSoC Creator project
provided with the application note for the complete code
with all the necessary functions made re-entrant.

Advanced Interrupt Topics
Optimizing the Interrupt Code
One of the important performance requirements in
interrupt based applications is the ISR code execution
time. In some applications, critical code in the ISR has to
be serviced within a particular time of receiving the
interrupt request. In some other applications, the interrupt
execution should not take a longer time and stall the main
code execution or other interrupts. The following
guidelines can be followed while writing the ISR code to
meet these requirements:

 Avoiding/reducing function calls in the ISR: The
most commonly overlooked practice while writing
interrupt code is having unnecessary function calls
inside the ISR such as calling Character LCD display
routines, and so on. Function calls increase the ISR
code execution time due to the stack push/pop
overhead involved in executing functions. The
recommended technique is to move the non-critical
function calls to the main code by setting a flag
variable in the ISR, and periodically checking the flag
in the main code.

 Optimizing the ISR Code in PSoC 3: PSoC 3, with
its 8-bit 8051 CPU, takes longer code execution time
compared to PSoC 5, which has the 32-bit ARM
Cortex M3 CPU. Therefore, you may often need to
optimize the ISR code in PSoC 3 to meet the code
execution time requirements. The 8051 CPU
architecture provides various features to speed up the
code execution. Some examples include placing the

local variables used in the ISR in the 8051 internal
data space, defining the variables that have only
binary values (0 and not 0) as bit variables. Refer to
the application note AN60630 - PSoC 3 8051 Code
Optimization, which explains all these optimization
techniques with code examples.

 Assigning proper priority to the interrupts: In
applications that have multiple interrupts, interrupts
that need to be serviced in a time critical manner
should be assigned higher priority compared to less
time critical interrupts.

Interrupt Component APIs
The source and header files generated for the interrupt
component provide several APIs for configuring the
interrupts. The code examples discussed until now use
only the commonly used isr_Start() and
isr_StartEx() APIs. Apart from these APIs, there are
individual APIs to perform the following functions:

 Enable(), Disable() APIs for enabling and
disabling interrupts.

 SetVector(), SetPriority() APIs for
dynamically changing interrupt vector address and
interrupt priority. SetVector() API is a non atomic
operation, which should be called only when the
interrupt is disabled to ensure proper operation.

 SetPending() API for software pending of
interrupts. The SetPending() API can be used to
set the pending bit for an interrupt line to trigger that
interrupt from software.

 ClearPending() API to clear the pending status of
interrupts. This results in the pending interrupt not
being serviced. This API does not have any effect on
the interrupt source signal; it only clears the pending
status bit of the interrupt line in the interrupt controller.

Refer to the Interrupt Component Datasheet for detailed
explanation of the APIs mentioned in this section and
other related APIs.

http://www.cypress.com/
http://www.cypress.com/?rID=40986
http://www.cypress.com/?rID=40986
http://www.cypress.com/?rID=46451

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 13

Apart from providing the above APIs as part of each
interrupt component, PSoC Creator provides a set of
generic interrupt APIs for all of the functions defined in this
section in the files CyLib.h and CyLib.c. These APIs are
used for configuring fixed function interrupts that are not
yet supported in PSoC Creator as explained in the section
Unsupported Fixed Function Interrupts. The explanation
for these generic interrupt APIs is provided in the System
Reference Guide document that is available under Help >
Documentation in PSoC Creator.

Interrupts and Other Components
Many components in PSoC Creator use the interrupt
component internally as part of their implementation.
Examples include the Real Time Clock (RTC) component
that uses an interrupt to keep track of the time in software
and communication protocol components such as UART
and SPI, which use the interrupts for data buffer
management purposes. The internal interrupt ISR is
usually written in a separate source file that is generated
along with the other component source files, header files.
Most of these internal ISR source files are generated with
the file name format as ComponentName_INT.c. For
example, an UART component named UART_1 has the
internal ISR generated in the source file UART_1_INT.c.
The internal ISRs in these components provide a
placeholder region for writing the user code, apart from the
PSoC Creator generated ISR code. The placeholder
region is usually at the start of the internal ISR.

Refer to the respective component datasheets and the
associated code examples provided in PSoC Creator to
understand the interrupt usage in each of these
components.

Unsupported Fixed Function Interrupts
Some fixed function interrupt sources such as the low
voltage detect (LVD) interrupt and the comparator interrupt
are not yet supported in PSoC Creator in the form of a
component. These are listed in Appendix A – Interrupt
Sources in PSoC 3 and PSoC 5 as Unsupported. Though
not supported, it is still possible for the user to configure
these fixed function interrupt sources by using the generic
interrupt APIs provided in the files CyLib.c and CyLib.h.
The sequence of steps for manually adding support for a
fixed function interrupt follow:

1. Configure the fixed function interrupt source to
generate the interrupt: This step involves configuring
the specific peripheral registers to enable interrupt
generation from the peripheral. The code example
provided with the application note explains configuring
the LVD interrupt source to generate an interrupt.
Refer to the PSoC 3 TRM, PSoC 5 TRM for details on
how to configure the respective peripherals to
generate the interrupt signal.

2. Enable the interrupt controller logic (only for
PSoC 3): For PSoC 3, the clock signal for the interrupt
controller block operation needs to be enabled, and
the interrupt controller should be configured to
generate the IRQ signal to the CPU. You can do this
by writing a value of “0x01” to the register
CYREG_INTC_CSR_EN using the following code.

 CY_SET_REG8(CYREG_INTC_CSR_EN, 0x01);
PSoC Creator automatically configures this register
only when an interrupt component is placed in the
example schematic. So, it is always recommended to
do this when using interrupts manually. This step is
not needed for PSoC 5 whose interrupt architecture is
different from that of PSoC 3. The
CYREG_INTC_CSR_EN register does not exist in
PSoC 5.

3. Configure the Interrupt Vector Address, Interrupt
Priority: The next step is to assign the interrupt vector
address and priority for the fixed function interrupt
source using the CyIntSetVector,
CyIntSetPriority interrupt APIs declared in the
file CyLib.h.

 Code 13: Configuring Interrupt Vector address, Priority

CyIntSetVector(Interrupt_Vector_Num,
Custom_ISR);
CyIntSetPriority(Interrupt_Vector_Num,
Priority_Value);

In Code 13, Interrupt_Vector_Num refers to the
interrupt vector number of the fixed function interrupt
source. This information is provided in Appendix A –
Interrupt Sources in PSoC 3 and PSoC 5 for each of
the fixed function interrupts. For example, the LVD
interrupt vector number is zero. In this code,
Custom_ISR is the user defined ISR function created
according to the steps explained in the section
Changing Interrupt Vector Address.
Priority_Value is the priority value that should be
assigned to this interrupt, and this should be a value
between 0 and 7.

4. Enable the fixed function interrupt, Global
interrupts: The final step is to enable the fixed
function interrupt line, and also enable the CPU in
PSoC 3 and PSoC 5 to accept the interrupt request
signals. The code is as follows:
Code 14: Enabling Interrupts

 CyIntEnable(Interrupt_Vector_Num);
 CYGlobalIntEnable;

http://www.cypress.com/
http://www.cypress.com/?id=2232&rtID=117
http://www.cypress.com/?id=2233&rtID=117

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 14

This completes the sequence of steps to be done for
adding support for a fixed function interrupt source in
PSoC Creator. Because most of the fixed function
interrupt sources are level interrupts, you must read the
peripheral status register in the ISR to bring the interrupt
line low. Refer to the TRM document for understanding the
type of interrupt signal generated by the different fixed
function peripherals.

Important Note: The procedure explained in this section
uses the interrupt vector number of a fixed function
interrupt source without the knowledge of the PSoC
Creator framework. PSoC Creator is not aware that the
interrupt vector number is already being used in the
design. So it might allocate the same vector number for
the other interrupt components placed on the example
schematic. If such a scenario occurs, the procedure
explained in the section Forcing Interrupt Vector Number
Selection should be followed to change the vector
numbers of the interrupt components that have been
assigned by PSoC Creator. They should be assigned an
interrupt vector number different from the ones being used
for manually configured interrupts.

Forcing Interrupt Vector Number Selection
PSoC Creator automatically assigns the interrupt vector
numbers for the interrupt components used in the
example. This assignment is done as part of the build
process and the vector numbers assigned for each
interrupt component can be viewed in the Interrupts tab of
the cydwr window. An example is given in Figure 15.

Figure 15. Interrupt Vector Number in cydwr window

There might be cases where you must override the vector
numbers assigned by PSoC Creator and assign a user
specified vector number. The Control File is used to do a
forced assignment of the interrupt vector number for an
interrupt component. The following sequence of steps
should be followed to change the interrupt vector number
for an interrupt component.
1. Click the Components tab of the Workspace Explorer
2. Right-click on the TopDesign component of the

example and select Add Component Item…
The Add Component Item dialog opens.

3. Scroll down to the Misc group, select Control File,
and click Create New. Figure 16 illustrates this step.

Figure 16. Adding the Control File

A TopDesign.ctl file is created and added to the
Workspace Explorer.

4. Double-click the TopDesign.ctl file to open it for
editing. The attribute keyword is used in the control
file to specify the interrupt vector number for each
interrupt component. The method of specifying the
interrupt vector number depends on whether the
interrupt component has been placed by the user on
the example schematic or the interrupt component is
used internally in a PSoC Creator component in the
schematic. The two methods are as follows:
a) For the interrupt components placed by the user

on the schematic, the syntax is:.

attribute placement_force of
instance_name : label is "Intr(0,
DesiredVectorNumber)";
Here instance_name refers to the name given for
the interrupt component in the schematic and
DesiredVectorNumber is the vector number (0-31)
that should be assigned for the interrupt. In the
following example, the interrupt isr_1 is assigned the
vector number 17.

attribute placement_force of isr_1 :
label is "Intr(0, 17)";

b) For components that use interrupts internally
such as RTC, UART, SPI, and I2C, the syntax is:

attribute placement_force of
\top_instance_name :
InternalInterruptName\: label is
"Intr(0, DesiredVectorNumber)";
Here, top_instance_name refers to the name of
the component that uses the interrupt internally.
Examples based on Figure 15 are SPIM_1, UART_1,
and RTC_1. InternalInterruptName refers to the
name assigned for the internal interrupt in the
component. This can be found from the Interrupts tab
of the cydwr window (Figure 15), where the interrupt
name is appended to the top component instance
name. In Figure 15, isr is the internal interrupt name

http://www.cypress.com/

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 15

for the RTC component, RTC_1. I2C_IRQ is the
internal interrupt name for the I2C component, I2C_1.
Example assignments based on the interrupts in
Figure 15 are as follows:

attribute placement_force of
\I2C_1:I2C_IRQ\ : label is
"Intr(0,19)";
attribute placement_force of
\RTC_1:isr\ : label is "Intr(0,3)";
attribute placement_force of
\SPIM_1:RxInternalInterrupt\ : label is
"Intr(0,4)";

5. After assigning the interrupt vector numbers, click
Save to save the changes made to the control file.

6. Clean and Build the example for the new interrupt
vector assignments to take effect. The Interrupts tab
in the cydwr window now has the modified interrupt
vector number assignments.

A code example, InterruptVectorProject, is provided with
the application note which has a Control File that shows
the assignments for the interrupts shown in Figure 15.

Note that the steps explained in this section to change the
interrupt vector number work only for the software
versions PSoC Creator 2.0 and above.

Summary
Interrupts are commonly used in many embedded
applications. For system-on-chip architectures such as
those of PSoC 3 and PSoC 5, interrupts play the critical
role of communicating the status of different on-chip
peripherals to the CPU. This application note provides the
foundation required to create interrupt based projects in
PSoC 3 and PSoC 5 for various applications. In addition,
advanced features available for interrupts in the PSoC

Creator IDE are also explained to give a complete
coverage of PSoC 3 and PSoC 5 interrupts.

Project Summary
AN54460.cywrk:

This workspace contains four code examples to
demonstrate the different topics explained in this
application note.

 A_MyFirstInterruptProject: Demonstrates a simple
interrupt based application using a timer interrupt to
toggle a pin

 B_PicuInterruptProject: Demonstrates the use of Port
Interrupt Control Unit (PICU) interrupt, procedure to
change the interrupt vector address for an interrupt,
handling re-entrant functions in PSoC 3

 C_LvdInterruptProject: Demonstrates the procedure to
use unsupported fixed function interrupts in a PSoC
Creator project using the Low Voltage Detect (LVD)
interrupt as an example

 D_InterruptVectorProject: Demonstrates the
procedure to manually assign interrupt vector
numbers for the interrupt components in PSoC
Creator

About the Author
Name: Vivek Shankar Kannan

Title: Applications Engineer Sr

Contact: vvsk@cypress.com

http://www.cypress.com/
mailto:vvsk@cypress.com

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 16

Appendix A – Interrupt Sources in PSoC 3 and PSoC 5
The list of interrupt sources for the 32 interrupt vectors in PSoC 3 and PSoC 5 is given in Table 1. The PSoC Creator
components that generate the fixed function interrupt signals are also provided. Fixed function interrupts not yet supported in
PSoC Creator are marked as Unsupported. Fixed function interrupts that are not available in PSoC 5 are also indicated in the
following table.

Note that there is no PSoC Creator component name in Table 1, either for the UDB Interrupt Sources or the DMA nrq Interrupt
Sources. This is because PSoC Creator allocates the interrupt vectors for the DMA, UDB interrupt sources dynamically based
on complex factors such as digital signal routing in the example. These interrupts are referred to by their internal signal names
in Table 1. It is not required for users to know about these internal signal details as their assignment is controlled internally by
the PSoC Creator.

For PSoC 5, the interrupt vectors from 0-31 are also referred to using the exception numbers 16-47. Refer to the PSoC 5 TRM
for details on the exceptions supported in PSoC 5.

Table 1. PSoC 3 and PSoC 5 Interrupt Sources

Interrupt
Vector #

Fixed Function Interrupt Sources DMA nrq Interrupt
Sources

UDB Interrupt
Sources

Interrupt Source PSoC Creator Component

0 Low Voltage Detect (LVD) Unsupported phub_termout0[0] udb_intr[0]

1 Cache Unsupported phub_termout0[1] udb_intr[1]

2 Reserved Not Applicable phub_termout0[2] udb_intr[2]

3 Power Manager RTC, SleepTimer phub_termout0[3] udb_intr[3]

4 PICU[0] Digital Input Pin, Digital
Bidirectional Pin

phub_termout0[4] udb_intr[4]

5 PICU[1] phub_termout0[5] udb_intr[5]

6 PICU[2] phub_termout0[6] udb_intr[6]

7 PICU[3] phub_termout0[7] udb_intr[7]

8 PICU[4] phub_termout0[8] udb_intr[8]

9 PICU[5] phub_termout0[9] udb_intr[9]

10 PICU[6] phub_termout0[10] udb_intr[10]

11 PICU[12] phub_termout0[11] udb_intr[11]

12 PICU[15] phub_termout0[12] udb_intr[12]

13 Comparators Combined Unsupported phub_termout0[13] udb_intr[13]

14 Switched Caps Combined Unsupported phub_termout0[14] udb_intr[14]

15 I2C I2C phub_termout0[15] udb_intr[15]

16 CAN (Not in PSoC 5) CAN phub_termout1[0] udb_intr[16]

17 Timer/Counter0 (Not in PSoC 5) Timer, Counter, PWM phub_termout1[1] udb_intr[17]

18 Timer/Counter1 (Not in PSoC 5) Timer, Counter, PWM phub_termout1[2] udb_intr[18]

19 Timer/Counter2 (Not in PSoC 5) Timer, Counter, PWM phub_termout1[3] udb_intr[19]

20 Timer/Counter3 (Not in PSoC 5) Timer, Counter, PWM phub_termout1[4] udb_intr[20]

21 USB SOF Int USBFS phub_termout1[5] udb_intr[21]

22 USB Arb Int phub_termout1[6] udb_intr[22]

23 USB Bus Int phub_termout1[7] udb_intr[23]

http://www.cypress.com/
http://www.cypress.com/?rID=55603

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 17

Interrupt
Vector #

Fixed Function Interrupt Sources DMA nrq Interrupt
Sources

UDB Interrupt
Sources

Interrupt Source PSoC Creator Component

24 USB Endpoint[0] phub_termout1[8] udb_intr[24]

25 USB Endpoint Data phub_termout1[9] udb_intr[25]

26 Reserved Not Applicable phub_termout1[10] udb_intr[26]

27 LCD (Not in PSoC 5) Segment LCD phub_termout1[11] udb_intr[27]

28 DFB Int Filter phub_termout1[12] udb_intr[28]

29 Decimator Int Delta Sigma ADC phub_termout1[13] udb_intr[29]

30 PHUB Error Int Unsupported phub_termout1[14] udb_intr[30]

31 EEPROM Fault Int Unsupported phub_termout1[15] udb_intr[31]

http://www.cypress.com/

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 18

Document History
Document Title: PSoC® 3 and PSoC 5 Interrupts - AN54460

Document Number: 001-54460

Revision ECN Orig. of
Change

Submission
Date

Description of Change

**
218B447B2733933 219B448BVVSK 220B449B07/09/09 221B450BNew Application Note

*A 2764026 VVSK 09/15/2009 Updated Figures 7, 8, and 9.
Added content in “Interrupt Priority Configuration” section on page 4.
Added content in the section “Re-entrant Functions” on page 7.

*B 2969819 VVSK 08/25/2010 Content and projects updated for Beta 5 of PSoC Creator.

*C 3452593 VVSK 12/01/2011 Complete rewrite of the application note including support for PSoC
Creator 2.0.

*D 3709462 VVSK 08/10/2012 Updated Interrupt Support in PSoC Creator (Updated Interrupt
Component Configuration, updated My First Interrupt Project).
Updated in new template.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Interrupts

 www.cypress.com Document No. 001-54460 Rev. *D 19

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products
Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory cypress.com/go/memory

Optical Navigation Sensors cypress.com/go/ons

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions
psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 5

Cypress Developer Community
Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

PSoC is a registered trademark and PSoC Creator is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2009-2012. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/go/locations
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/go/powerpsoc
http://www.cypress.com/go/plc
http://www.cypress.com/?id=64
http://www.cypress.com/go/ons
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/products/?gid=14
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1162
http://www.cypress.com/go/support
http://www.cypress.com/

	Contents
	Introduction
	PSoC 3 and PSoC 5 Interrupt Architecture
	Unique Features of PSoC 3 and PSoC 5 Interrupts
	Level and Edge Triggered Interrupts
	PSoC 3 and PSoC 5 Interrupt Sources
	Fixed Function Interrupt Sources
	DMA nrq Interrupt Source
	UDB Interrupt Sources

	Interrupt Support in PSoC Creator
	Interrupt Component Configuration
	Guidelines for the Interrupt Type Parameter Selection

	Interrupt Priority Configuration
	My First Interrupt Project
	Project Schematic
	Writing the Interrupt Service Routine
	Completing the Main Code
	Significance of Keyword CY_ISR

	Changing Interrupt Vector Address

	Re-entrant Functions in PSoC 3
	Re-entrancy in Keil C51 Compiler
	Re-entrancy Support in PSoC Creator
	Making Generated API Functions Re-entrant
	Making User Defined Functions Re-entrant
	Making Custom Component APIs Re-entrant

	Determining Re-entrant Functions
	PICU Interrupt Project
	PICU Interrupt
	Project Schematic
	Interrupt Service Routine (ISR)
	Main Code
	Handling Re-entrancy

	Advanced Interrupt Topics
	Optimizing the Interrupt Code
	Interrupt Component APIs
	Interrupts and Other Components
	Unsupported Fixed Function Interrupts
	Forcing Interrupt Vector Number Selection

	Summary
	Project Summary

	About the Author
	Appendix A – Interrupt Sources in PSoC 3 and PSoC 5
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions

